KAIA PEPTIDES — PRODUCT SHEET

Cagrilintide (10mg)

Amylin-Mimetic Peptide – Satiety, Appetite Regulation & Metabolic Balance

What It Is

Cagrilintide is a long-acting amylin analog researched for its ability to:

- Regulate appetite and fullness
- Slow gastric emptying
- Support healthy metabolic signaling
- Reduce caloric intake in animal models
- Enhance satiety through CNS pathways

It works through **amylin receptors** rather than GLP-1, making it a powerful complementary pathway in metabolic research.

Understanding Cagrilintide — A Metaphorical Story

Imagine your appetite as a busy restaurant.

Food comes in, cooks get overwhelmed, and the line to order gets longer and louder.

When the restaurant is chaotic:

- Customers (hunger signals) rush in
- Orders pile up
- Meals go out too fast
- People ask for seconds
- The kitchen never gets a break

Your body feels this chaos as:

- Overeating
- Constant cravings
- Faster stomach emptying

• A weak "fullness" signal

Now imagine a **new restaurant manager** arrives — calm, organized, firm.

That manager is Cagrilintide.

Cagrilintide Controls the Door (appetite regulation)

It doesn't shut the restaurant down — it simply slows how many customers are allowed to enter at once.

The hunger line outside moves more calmly and predictably.

It Speaks to the Dining Room (satiety signaling)

Cagrilintide sends a clear message:

"You're full. You've had enough. Take your time."

This represents its activity in satiety centers in the brain.

• It Slows the Kitchen (gastric emptying)

Meals aren't rushed out anymore.

Food stays in the "stomach kitchen" longer, giving the body time to register fullness.

This makes overeating far less likely.

• It Reduces Noise & Chaos (central appetite suppression)

The restaurant becomes quieter.

Less pressure.

Fewer cravings.

More control.

This is how Cagrilintide supports metabolic regulation in research studies.

The Result: A Calm, Efficient Appetite System

With Cagrilintide directing the flow:

- Hunger signals slow down
- Fullness signals strengthen
- Meals stretch longer
- Cravings shrink
- The entire "restaurant system" operates in balance

This is the simplest visual way to describe how Cagrilintide supports appetite and metabolic research.

Primary Research Benefits

(Summarized from published scientific literature)

Appetite Regulation

- Reduces hunger intensity
- Increases fullness
- Lowers frequency of eating signals

Satiety Support

- Strengthens post-meal satisfaction
- Supports CNS satiety pathways
- Helps decrease caloric intake in models

Gastric Emptying Control

- Slows stomach emptying
- Prolongs fullness after meals

Metabolic Balance

- Supports healthy body-weight models
- Complements GLP-1 pathways through amylin-based signaling

Common Research Use Cases

- Appetite-signal modeling
- Satiety and fullness research
- Metabolic and weight-regulation pathways
- Combination therapy studies (GLP-1 + amylin)
- Caloric-intake and craving-behavior models

Typical Research Protocols (Literature-Based)

(For educational/reference purposes; not medical advice)

• **Duration:** 4–16 weeks

Frequency: Once weekly in most models

• Vial: 10mg Cagrilintide

Reconstitution: With bacteriostatic waterRoute: Subcutaneous in research settings

Storage & Stability

- Store lyophilized at 2–8°C
- Use reconstituted peptide within 30 days
- · Protect from heat, light, and moisture

Safety Profile (Research-Based Notes)

- Non-stimulatory
- Side effects similar to GLP-1 class (GI-related in some models)
- No major toxicity reported in available studies
- Long-acting amylin analog for metabolic research

Format

Cagrilintide 10mg lyophilized powder

- Research Use Only
- Purity: ≥99% (third-party verified)

Legal & Compliance

For Research Use Only. Not for human consumption. Not approved by the FDA to diagnose, treat, cure, or prevent any disease.